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Symmetric linear kinetic theory
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Equilibrium time correlation functions are expressed by two Onsager-symmetric quantumlike operators
containing equilibrium distribution function. A model of dissipation for smooth interaction potentials is pro-
posed. Approximations leading to the mode coupling formula are clearly stated and the Green-Kubo prescrip-
tion for the calculation of the transport coefficients is reformulated.
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I. INTRODUCTION

The main problem in the linear kinetic theory is to co
struct a kinetic equation consistent with Onsager-symm
relations~OSR! for transport coefficients in nonequilibrium
thermodynamics@1#. Although time correlation functions ar
evidently symmetric, it is by no means obvious whethe
given equation is symmetric and obeys OSR. The prob
was solved for the Enskog equation@2,3# and it allowed to
prove anH theorem for a hard sphere fluid both in linear a
nonlinear regime@2,4#. It is possible to obtain a symmetri
linear kinetic equation for a one-particle distribution functi
also for a square-well potential@5,6# and multistep potentia
@7,8#. A more general linear theory of hard spheres@9# simi-
larly as the Enskog theory consists in fact of two adjo
kinetic equations@9–11#. In the kinetic theory for smooth
potentials, no irreversible equation that satisfies OSR
present except a smooth potential with a hard core~square
well! @12#.

On the other hand, we have a symmetric mode coup
formula for calculation of time correlation functions an
transport coefficients@13–16#. It is, however, derived rathe
intuitively and it is hardly known what is neglected.

We present a different method to construct a linear kine
theory where OSR are natural. Instead of kinetic equati
we rather propose an algebra of operators used to calc
time correlation functions. It algebraically resembles qu
tum mechanics because of using a Hilbert space and op
tors developed by Bławzdziewicz and Cichocki@10,11#. We
construct the Hilbert space of fluctuations with a stand
scalar product. Then two quantumlike operators are defin
The operatorQ @10,11# counts equal time equilibrium corre
lation functions and the operatorL @6,17# counts infinitesimal
time correlation function. Note that in the standard Mori a
proach@18#, the operatorQ was included in the scalar prod
uct. It may be convenient for one-particle functions b
causes troubles when considering two-particle functions,
cause correlations do not factorize@16#.

Our main result is a symmetric formula for the Lapla
transform of a time correlation function. Moreover, we pr
pose a mechanism of dissipation for smooth potentials wh
can be interpreted as a coarse graining in the phase sp
We cut correlations if considered particles are at the dista
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larger than certain lengthD. It turns out that this discontinu
ity is enough to have nonpositive real parts of eigenvalue
L as for hard spheres. Hence our theory includes theH theo-
rem~decay of correlations! for smooth potentials similarly as
in the case of hard spheres@19#. We are able to write an
Enskog-like equation for smooth potentials. The Green-Ku
expressions for transport coefficients@20# are reformulated
using Q and L. Due to theH theorem, the dissipative char
acter of transport is transparent. However, it cannot
proved for smooth potentials that only energy and den
modes belong to the kernel ofL in the truncated space. W
also discuss the derivation of the mode coupling formu
though noH theorem can be proved there.

The paper is organized as follows. We start by writi
definitions in Sec. II. In Sec. III, the linear algebra necess
in our description is introduced. The structure of the sta
operatorQ and dynamic operatorL is described in Sec. IV.
The operatorL for hard spheres is derived in Sec. V. Th
mechanism of dissipation for smooth potentials is presen
in Sec. VI and the Enskog-like equation is given in Sec. V
The Green-Kubo formulas are expressed in our formalism
Sec. VIII. The main result of the paper, the formula for tim
correlation functions, is presented in Sec. IX. An applicati
to mode coupling is presented in Sec. X and Sec. XI is
voted to discussion and conclusions.

II. BASIC CONCEPTS

A system ofn particles is represented by a set of phas
x1 , . . . ,xn , where the phasexi5(r i ,pi) represents the posi
tion r i and momentumpi of the particlei, respectively. We
shall consider systems with a floating number of particles
n is not fixed. For the convenience, we shall writei instead
of xi andm to denote a set ofm phases. If two different sets
i and j appear theni1 j is a set ofi 1 j phases, buti2 j is a
set of i 21 phasesi without the phasej.

The probability density of finding exactlyn particles in
the phase space pointn5$1, . . . ,n% is r(n)[rn . Any per-
mutation of particles leads to the same state, since the
ticles are identical. Thereforern must be a symmetrical func
tion of phases. The average of the phase functionA
5$A(n);n>0% is given by

^A&5 (
n50

` E dn r~n!A~n![ (
n50

` E dn rnAn , ~1!
©2003 The American Physical Society01-1
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where dn[d1, . . . ,dn/n! denotes integration over all ca
nonical coordinates of phases, that is

E di5h23E d3r iE d3pi , ~2!

whereh is the Planck’s constant. Arguments ofrn and An
are omitted whenever it is unambiguous. Reduced distr
tion functions are defined as

f ~m!5 (
n50

` E dn r~n1m!. ~3!

The probability distribution must satisfy the normalizatio
condition

f 05 (
n50

` E dn rn51. ~4!

Functionsf are useful in averages of cluster functions,

A~n!5a01(
i Pn

a~ i !1(
i . j

a~ i j !1•••5 (
m#n

a~m!, ~5!

^A&5 (
m50

` E dmamf m . ~6!

The above cluster decomposition will be frequently used
the paper with small letters standing for cluster functions a
capital calligraphic ones for whole functions.

When considering hard spheres of diameterd, one intro-
duces the overlap functionW defined as

W~n!5 )
i . j
i j Pn

W~ i j !, W~ i j !5u~r i j 2d!5H 1 if r i j >d

0 if r i j ,d,

~7!

where r i j 5r i2r j , r i j 5ur i j u. The equilibrium probability
densityr of hard spheres of massM interacting with the pair
potentialf2(r i j ) at the temperatureT is given by

rn5Wn exp$~V1nm2Hn!/kBT%, ~8!

where the HamiltonianH is defined as

Hn5(
i Pn

pi
2/2M1(

i . j
f2~r i j ! ~9!

andm is the chemical potential,V52pV is the grand ther-
modynamic potential, andp is the pressure of the fluid in
volume V. The equilibrium distribution functions have a
ways the form

f ~m!5g~r1 , . . . ,rm!)
i 51

m

f ~ i !, ~10!

wheregm is m-point correlation function andf 1 is a Max-
wellian distribution of velocities,
02120
u-

n
d

f ~r,p!5nh3~2pMkBT!23/2exp$2p2/2MkBT% ~11!

with densityn5n(m,T). Functionsrm and f m without any
additional indices will represent equilibrium distributio
hereafter.

III. LINEAR OPERATORS

It is convenient to work with a Hilbert space of ket ve
tors uu&[$u1 ,u2 , . . . % with infinite number of components
whereui( i) is a symmetric function of phases ofi particles
~similar to Fock space for bosons! @10,11#. The adjoint bra
vector is ^uu[$u1* ,u2* , . . . %, where the asterisk denote
complex conjugation. The scalar product of two vectorsu
andw is defined as

^uuw&5 (
k51

` E dk uk* wk . ~12!

We define linear operators in such a space. The operatX
acting on the vectoru gives the vector

Xuu&5uXu& ~13!

with the components

~Xu!k5(
i 51

`

Xkiui ~14!

and

Xkiui5E di X~ku i!u~ i!. ~15!

The product of operatorsX andY is defined as

~XY! i j 5 (
k51

`

XikYk j , ~16!

where

XikYk j5E dk X~ iuk!Y~ku j!. ~17!

The adjoint of the operatorX is then defined by the equalit

^uuX†uw&* 5^wuXuu& ~18!

and the identity operatorI is defined by

^uuI uw&5^uuw& ~19!

for arbitraryu andw. It can be explicitly written as

I ~kuk8!5(
s

)
i 51

k

d„i 2s~ i 8!…, I mn50,mÞn, ~20!

where

d~ i 2 j !5h23d~r i2r j !d~pi2pj ! ~21!
1-2
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and the sum is taken over all permutationss of the setk8.

IV. OPERATORS Q AND L

A linear nonequilibrium state of the system is describ
by a small deviation from equilibrium given by a vectorb
@11#,

rb~n!5r~n!@11B~n!2^B&#, ~22!

where

B~n!5 (
m#n

b~m!. ~23!

The average ofdA* 5A* 2^A* & corresponding to a given
quantity a in the nonequilibrium state represented by E
~22! is written as

^dA* &b5^dA* dB&5^auQub&, ~24!

where the matrix elements ofQ have the form

^auQub&5(
i , j ,k

E di dj dk @ f i 1 j 1k2dk,0f i f j #ai 1k* bj 1k .

~25!

The operatorQ is positive definite since

^auQua&5^udAu2&.0. ~26!

We introduce Liouville evolution operator for smooth pote
tials,

Lk5$•,H%5(
i Pk

v i•
]

]r i
2(

iÞ j

]f2~r i j !

]r i j
•

]

]pi
, ~27!

where$a,b% is a Poisson bracket defined as

$a,b%5(
i

S ]a

]r i
•

]b

]pi
2

]a

]pi
•

]b

]r i
D ~28!

andv5p/M . We will use the operatorL acting in our Hil-
bert space defined by

uw&5Luu&⇔W5LU, ~29!

where

wk5Lkuk2(
iÞ j

]f2~r i j !

]r i j
•

]

]pi
u~k2 j !. ~30!

The conjugate ofL is defined by equalityuu&5L †uw&,
where

uk52Lkwk1E d~k11!(
i Pk

]f2~r i ,k11!

]r i ,k11
•

]

]pi
w~k11!.

~31!

The evolution of a phase functiona is described by the equa
tion
02120
d

.

] tA5LA or ] tua&5Lua&. ~32!

The evolution of probability fluctuationb differs from the
above by a minus sign,

] tB52LB or ] tub&52Lub&. ~33!

The time evolution of an average^A(t)&b(0)5^A(0)&b(t) is
governed by the equation

d^A&b

dt
5^LA&b5^$A,H%&b5kBT^$A,B%&. ~34!

The above observation leads to the definition of the oper
L @6,17# by its matrix elements,

^auLub&5kBT^$A* ,B%&

5kBT (
m,i , j

E di dj dm f i 1 j 1m$ai 1m* ,bj 1m%.

~35!

Note thatL52QL5L †Q.
If we introduce a functional

H5^udBu2&5^buQub&, ~36!

then

dH/dt52kBT Rê $B* ,B%&52 Rê buLub&50 ~37!

so that there is no dissipation (H theorem! in this picture.

V. HARD SPHERES

The operatorL must be defined in a slightly different wa
for hard spheres because of singular interactions. It i
pseudo-operator@21,22# depending on where the overla
function W in Eq. ~7! is placed,

L̄k65Lk6 (
i . j 51

k

T̄6~ i j !,

Lk65Lk6 (
i . j 51

k

T6~ i j !, ~38!

where

T6~ i j !5d~r i j 2d1!uv i j • r̂ i j uu~7v i j • r̂ i j !~gi j 21!,
~39!

T̄6~ i j !5T7
† 5d~r i j 2d1!uv i j • r̂ i j u$u~7v i j • r̂ i j !gi j

2u~6v i j • r̂ i j !% ~40!

and v i j 5v i2v j , r̂ i j 5r i j /r i j , d15d1ueu with e→0. The
operatorgi j turns velocities,

gi j w~ . . . ,v i , . . . ,v j , . . . !5w~ . . . ,v i8 , . . . ,v j8 , . . . !,
1-3
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v i85v i2~v i j • r̂ i j ! r̂ i j ,
~41!

v j85v j1~v i j • r̂ i j ! r̂ i j ,

Due to the relation

T̄6~ i j !2T6~ i j !57v i j •
]W2~ i j !

]r i j
57v i j • r̂ i j d~d12r i j !,

~42!

we haveL̄6W5WL6 . The operatorL6 is now defined by

uw&5L6uu&⇔W5L6U, ~43!

where

wk5Lk6uk6(
iÞ j

T6~ i j !u~k2 j !

2(
iÞ j

]f2~r i j !

]r i j
•

]

]pi
u~k2 j ! ~44!

and the conjugate operatorL 6
† is defined byuu&5L 6

† uw&,

uk52L̄k7wk1E d~k11!(
i Pk

S ]f2~r i ,k11!

]r i ,k11
•

]

]pi

6T̄7~ i ,k11! Dw~k11!. ~45!

The time evolution of phase functionsA and probability
fluctuationB are given fort.0 by

] tA5L1A or ] tua&5L1ua&, ~46!

] tB52L2B or ] tub&52L2ub&. ~47!

We define

L52QL25L 1
† Q. ~48!

We shall evaluatêauLub& assuming thata andb arecontinu-
ouswhen spheres overlap,

^auLub&52^A* L2B&5kBT^$A* ,B%&

1kBTK (
i . j

A* ]B2B]A*

]pi j
• r̂ i j d~r i j 2d1!L

2
1

2 K (
i . j

d~r i j 2d1! r̂ i j •v i j u~r i j •v i j !

3~A* B22A* B81A* 8B8!L , ~49!

where

]

]pi j
5

1

2 S ]

]pi
2

]

]pj
D ~50!

andU85gi j U. The operatorL can be divided into three part
02120
L5LA1LB1LC , ~51!

whereLA , LB , andLC are Poisson term, hard core and e
tropy production term, respectively, where

^auLAub&5kBT (
k,m,n

E dk dmdn f k1m1n$ak1m* ,bk1n%,

~52!

^auLBub&5kBT (
k,m,n

E dk dmdn f k1m1n (
i Pk1m
j Pk1n

i . j

3d~r i j 2d1! r̂ i j •S ak1m*
]bk1n

]pi j
2bk1n

]ak1m*

]pi j
D

1kBT (
k,m,n

E d1dk dmdn f 11k1m1n(
i Pk

3d~r i12d1! r̂ i1•S ak1m*
]bk1n

2]pi
2bk1n

]ak1m*

2]pi
D ,

~53!

^auLCub&52
1

2 (
k,m,n

E dk dmdn f k1m1n (
i Pk1m
j Pk1n

i . j

d~r i j 2d1!

3 r̂ i j •v i j u~r i j •v i j !~ak1m* bk1n22ak1m* bk1n8

1a* k1m8 bk1n8 !2
1

2 (
k,m,n

E d1dk dmdn

3 f 11k1m1n(
i Pk

d~r 1i2d1! r̂1i•v1iu~r1i•v1i !

3~ak1m* bl 1m22ak1m* bk1n8 1a* k1m8 bk1n8 !. ~54!

It is important that Eq.~37! holds for hard spheres if

Bn~ i j !5Bn~ i 8 j 8! for r i j 5d, ~55!

where other phases are omitted and only nonoverlapp
configurations are considered. This is generally true if
dynamics is let for a period of time but not for a single tim
point.

VI. DISSIPATION

Our purpose is to change the action of the operatorL in
such a way that we get theH theorem

dH/dt52 Rê buLub&<0. ~56!

In the case of hard spheres it is enough to cut the Hilb
space of vectorsu so thatuk50 for k. l . Equation~32! is
then no longer valid. Instead, the evolution of phase fu
tions a and probabilityb is given by equations

] tQua&5Q] tua&52Lua&, ~57!

] tQub&5Q] tub&5Lub&. ~58!
1-4
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The operatorQ commutes with time derivative because eq
librium distribution is invariant in time. The operatorsQmn
and Lmn are both truncated tom,n< l . Such a general de
scription leads to theH theorem~56! as shown in Ref.@19#.
TheH theorem follows immediately from the last term in E
~49!. Note that we can reverse the inequality~56! by chang-
ing L2 to L1 in Eq. ~48!, but then time must be reversed to

Unfortunately, such a truncation is useless in the cas
smooth potentials since we still obtain Eq.~37!. The trunca-
tion must be carried out more carefully. We introduce a
other arbitrary parameter: the lengthD, which is larger than
the range of the potential. The componentsuk are equal to 0
for k. l and ul is equal to zero ifr i j .D for every pair
$ i , j %# l. We can define the characteristic functionW as

W512)
i j

u~r i j 2D ! ~59!

so thatul5Wũl , whereũl is a continuous function. In the
casel 52, the truncation means thatu2(12)50 for r 12.D.
However, for l 53 we haveu3(123)50 if r 12.D, r 23.D
and r 31.D simultaneously. It is important to take proper
into account the discontinuity of functionsul at r i j 5D. We
introduce shifted functionsul

1 andul
2 defined as

ul
65W 6 ũl , ~60!

where

W 65H 1 if r i j ,Di j
6 and for any pair~ i j !

0 otherwise,
~61!

and Di j
65D6ueur i j •v i j with e→0. The function ul

1 is
slightly stretched forr i j •v i j .0 and squeezed forr i j •v i j ,0
and vice versa forul

2 . All functions uk for k, l are not
affected byW.

The matrix elements ofQ are independent of the choice o
signs since

^a6uQub6&5^a7uQub6&5^auQub&. ~62!

The key point of our construction is a proper choice of sig
in L, because it contains derivatives. The choice that lead
the H theorem fort.0 is the following:

^auLub&5^a2uLub1&5kBT^$A * 2,B1%& ~63!

for everya andb. It can be written also in terms of distribu
tion functions

^auLub&5kBT(
mi j

E di dj dm f i 1 j 1m$ai 1m
2* ,bj 1m

1 %.

~64!

However, the derivatives should be carried out very carefu
since they act uponW 6. In the casem1 iÞ lÞm1 j we
have
02120
-

of

-

s
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y

E di dj dm f i 1 j 1m$ai 1m
2* ,bj 1m

1 %

5E di dj dm f i 1 j 1m$ai 1m* ,bj 1m%, ~65!

but m1 i 5m1 j 5 l and is a tricky term. We show in Appen
dix A that we obtain forn5k5 l 2m,

kBTE dmdk dn f m1k1n$am1k
2* ,bm1n

1 %

5kBTE dmdn dk f m1k1nF )
i . j

i j Pm

@12W̃~ i j !u~D2r i j !#G
3$am1k* ,bm1n%1kBTE dmdk dn f m1k1n

3 (
i . j

i j Pm

W̃~ i j !u~D2r i j !$ãm1k* ,b̃m1n%1kBT

3E dmdk dn f m1k1n(
i . j

W̃~ i j !d~r i j 2D !

3 r̂ i j •
b̃m1n]ãm1k* 2ãm1k* ]b̃m1n

]pi j
2

1

2E dmdk dn

3 f m1k1n(
i . j

W̃~ i j !d~r i j 2D !u r̂ i j •v i j uãm1k* b̃m1n ,

~66!

where

W̃~ i j !5 )
(pq)Þ( i j )
pqPm1k

u~r pq2D ! )
(pq)Þ( i j )
pqPm1n

u~r pq2D ! ~67!

and]/]pi j is defined by Eq.~50!. It is apparent that the two
first, the third, and the fourth term correspond toLA , LB ,
and LC for hard spheres, respectively. TheH theorem~56!
follows from the last, dissipative term fora5b. The equal
sign holds forbl50 at the boundary of the region ofW
51. Hence, it is the discontinuity of vector component th
gives theH theorem just like the discontinuity of the poten
tial in the case of hard spheres.

We may ask what kind of vectorsb with the group prop-
erty, i.e.,bk→0 for r i j →` and i , j Pk satisfy

Lub&50. ~68!

In the case of hard spheres, it can be proved thatb must be
an invariant of motion@19#, namely,

b1~1!5C1p1
2/2M1C2•p11C3 , b25C1f2 ,

bk50 for k.2. ~69!

We present the proof for hard spheres with a smooth tai
Appendix B. Although one can find that Eq.~69! satisfies Eq.
~68! in the case of smooth potentials, it is by no means cl
1-5
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that this is the only solution. The reason why it cannot
simply proved is explained in Appendix B. Thus, we are l
with an intriguing hypothesis that there may be other so
tions of Eq.~68! than just Eq.~69!.

VII. ENSKOG-LIKE RENORMALIZATION

The linearized Enskog equation for hard spheres is
tained by cutting the Hilbert space atl 51. From Eq.~57!, it
reads in our formalism

] tQ11b15Q11] tb15L11b1 . ~70!

We present a counterpart of linearized Enskog equation
smooth interactions. We truncate the Hilbert space atl 52
and takeD sufficiently larger than the range of interactio
The Enskog-like equation is then consisted of two equatio

] tQ11b11] tQ12b25L11b11L12b2 ,
~71!

] tQ21b11] tQ22b25L21b11L22b2 .

The second equation is valid only forr 12,D1 and all op-
erations involvingL must be carried out using Eq.~64!. If the
potentialf2 contains a tail that should not be cut~e.g., to
keep energy strictly conserved!, the definition ofu6 may be
modified as

uu6&5Puu&1W 6~ I 2P!uu&, ~72!

whereP is a Zwanzig projection operator@23# onto the en-
ergy space

P5E d3q

~2p!3

uẽq&^ẽquQ

^ẽquQuẽq&
~73!

and

ẽn,q5H exp$ iq•r1%p1
2/2M if n51

exp$ iq•~r11r2!/2%f2~r12! if n52

0 otherwise.

~74!

The matrix elementsQ11, Q12, Q22, L11, L12, andL22 con-
tain up to four-point correlation functions. Therefore, calc
lations are much more complicated than in the hard sph
case.

VIII. TRANSPORT COEFFICIENTS

The Green-Kubo formulas for transport coefficients c
be reformulated in terms of our Hilbert space,Q andL. We
briefly outline the well-known derivation of the formulas fo
kinematic shear viscosityn, kinematic bulk viscosityj, and
kinematic heat conductivityk. For details see, e.g., Re
@20#.

Let us consider a set of five hydrodynamic modesuñ&,
uṽ&, and uẽ&, depending on a wave vectorq, corresponding
to density, velocity, and energy fluctuations with compone
02120
e
t
-

-

or

s,

-
re

n

s

ñ15eiq•r1,

ṽ15eiq•r1v1 ,

ẽ15eiq•r1Mv1
2/2,

ẽ25eiq•(r11r2)/2f2~r 12!. ~75!

It is useful to replace the energy mode by the heat mode

u t̃ &5uẽ&2S ]e

]nD
T

uñ&, ~76!

where

S ]e

]nD
T

5e1
p

n
2

T

n S ]p

]TD
n

, ~77!

and e, p, T, n denote energy per particle, pressure, conc
tration, and temperature, respectively.

The following analysis applies both to hard spheres a
smooth potentials. In the case of smooth potentials, one
just omit terms with diameter of spheresd. We first find
expressions for currents up to the first order inq,

L6uñ&5 iq•u jn&5 iq•uṽ&,

L2uṽ&. iq•u ĵ v1&, 2^ṽuL 1
† .^ ĵ v2u• iq, ~78!

L2uẽ&. iq•u je1&, 2^ẽuL 1
† .^ je2u• iq,

and

u jt&5u je&2S ]e

]nD
T

uṽ&q50 . ~79!

Due to Eqs.~27! and ~38!, the explicit expressions for cur
rents are

ĵ v,15v1v1 ,

ĵ v,265dr̂12r̂12~ r̂12•v12!
2d~r 122d1!u~6r12•v12!

2
r12

M
•

]f2~r 12!

]r12
,

je,15
Mv1

2

2
v1 ,

je,265Mdr̂12~u12• r̂12!~ r̂12•v12!
2d~r 122d1!u~6r12•v12!

2r12

]f2~r 12!

]r12
•u121u12f2~r 12!, ~80!

whereu125(v11v2)/2 and we take the sign1 or 2 in 6 in
ket or bra vector, respectively.

The Green-Kubo expressions for transport coefficients

n5nGK1n0 , j5jGK1j0 , k5kGK1k0 , ~81!

where
1-6
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nGK52
3^ ǰ v2u:QL21Qu ǰ v1&

10̂ ṽu•Quṽ&q50

52
^ j v2

xy uQL21Qu j v1
xy &

VkBTn/M
,

jGK52
3^ j v2

' uQL21Qu j v1
' &

^ṽu•Quṽ&q50

52
^ j v2

' uQL21Qu j v1
' &

VkBTn/M
,

kGK52
cV^ jt2

' u•QL21Qu jt1
' &

3^ t̃ uQu t̃ &q50

52
^ j't2

x uQL21Qu j't1
x &

VnkBT2
,

~82!

wherecV is specific heat per particle andV is volume of the
system. The perpendicular currents are defined as

u ǰ v&5u ĵ v&2 Îu j v&,

j v&5
1

3
tru ĵ v&,

u jv
'&5u jv&2

1

ncV
S ]p

]TD
n

u t̃ &q502S ]p

]nD
T

uñ&q50 /M ,

u jt
'&5u jt&2

T

n S ]p

]TD
n

uṽ&q50 . ~83!

If the tail of the potential is not cut, then formulas~82! are
still valid since

Luẽq&.2 iq•Qu je1&, ^ẽquL.2 iq•^ je2uQ,

Luṽq&.2 iq•Qu ĵ v1&, ^ṽquL.2 iq•^ ĵ v2uQ, ~84!

where energy modesẽq are included in the truncated spa
by Eq. ~73!.

The bare coefficientsn0 , j0, andk0 are equal to zero for
smooth potentials. However, they occur in the case of h
spheres due to the hard core and they are obtained from
second order terms of^ãuLuã& @20#,

3^ṽuLuṽ&

^ṽu•Quṽ&
.2n0~ Îq21qq/3!2j0qq,

^ t̃ uLu t̃ &

^ t̃ uQu t̃ &
.2

k0

cV
q2. ~85!

We stress thatL is inverted in the reduced Hilbert space
the truncation of the space not only leaves the Green-K
formulas unchanged but also includes dissipation.

IX. TIME CORRELATION FUNCTIONS

It is important thatL satisfies two OSR@1# even if the
Hilbert space is truncated:

^a~p!uLub~p!&5^b~2p!uLua~2p!&* ,
~86!

^a~r!uLub~r!&5^b~2r!uLua~2r!&* .
02120
rd
he

o

It follows from the fact that under transformationr→2r or
v→2v we have

v i•
]

]r i
→2v i•

]

]r i
, T1→T2 , W 1→W 2. ~87!

Suppose we would like to find the time correlation functi
of two vectorsa andb ~or dA anddB),

^dA* ~0!dB~ t !&5^auQ exp~ tQ21L !ub&. ~88!

The Laplace transform of the time correlation function ha
little simpler form,

^auG~z!ub&5E
0

`

e2zt^dA* ~0!dB~ t !&dt

5^auQ~zQ2L !21Qub& ~89!

or

G~z!5Q~zQ2L !21Q. ~90!

The difference between this and Mori’s method@18# is that
there the operatorQ is hidden in the scalar product. Here th
symmetry of time correlation functions, even with dissip
tion included, is transparent.

Let us introduce irreducible operatorsQW , Q̄, and QQ
@10,11# defined uniquely by

Q5QW Q̄QQ ~91!

and

Q̄i j 50 if iÞ j , ~92!

QQ i j 5H I i i if i 5 j

0 if i . j ,
~93!

andQW 5QQ †. The operatorQ̄ is nonzero only if its left phases
are close to right phases. The graphical illustration of t
decomposition is presented in Fig. 1. For example,

Q̄115Q11,

QW 215Q21Q̄11
21 ,

Q̄225Q222Q21Q̄11
21Q12. ~94!

FIG. 1. Decomposition ofQ into QW , Q̄ andQQ .
1-7
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Some of these operators are expressed by well-known co
lation functions,

~Q̄11a1!~1!5 f 1~1!a1~1!1 f 1~1!E d2 f 1~2!h2~12!a1~2!,

~95!

~Q̄11
21a1!~1!5

a1~1!

f 1~1!
2E d2 c2~12!a1~2!, ~96!

whereh25g221 andc2 represent the pair correlation an
the direct correlation function, respectively@24#. For more
detailed analysis of these operators, see Ref.@11#. We also
defineL̄ by

L5QW L̄QQ . ~97!

We remember from Eqs.~30! and~44! thatLi j 2 is equal to 0
if i . j 11. Such a situation takes place whenever there
only pair interaction. We have

L̄52Q̄QQ L2QQ 21 ~98!

and due to the definition~93! L̄ i j 50 if i . j 11 similarly as
L2 . Taking into account the Onsager symmetry~86! we
have

L̄ i j 50 for u i 2 j u.1. ~99!

The formula~90! can be rewritten in the form containingA,
B, Q̄, andL̄:

^auG~z!ub&5^AuḠ~z!uB&, ~100!

where capital vectors are defined as

uU&5QQ uu& ~101!

and

Ḡ~z!5Q̄~zQ̄2L̄ !21Q̄. ~102!

Note that due to Eq.~93! truncation of vectors denoted b
small letters is equivalent to the truncation of capital vecto
The Enskog-like equation~71! can be written in the form

] tQ̄11B15L̄11B11L̄12B2 ,

] tQ̄22B25L̄21B11L̄22B2 . ~103!

X. MODE COUPLING

We can construct one-particle Enskog propagator for h
spheres or hard spheres with a smooth tail usingQ̄11 and
L̄11:

S11
E ~ t !5exp$tQ̄11

21L̄11%Q̄11
21 ~104!

or its Laplace transform
02120
re-

is

.

rd

S̃11
E ~z!5~zQ̄112L̄11!

21. ~105!

We define operatorsẊ and X̃ by

L̄225L̇221L̃22,

Q̄225Q̇221Q̃22, ~106!

Q̄22
215Q̇22

211K22,

where

Q̇22~12u1828!5Q̄11~1u18!Q̄11~2u28!

1Q̄11~1u28!Q̄11~2u18!,
~107!

Q̇22
21~12u1828!5Q̄11

21~1u18!Q̄11
21~2u28!

1Q̄11
21~1u28!Q̄11

21~2u18!,

L̇22~12u1828!5L̄11~1u18!Q̄11~2u28!1L̄11~2u28!Q̄11~1u18!

11↔2.

Due to the property

^auLub&50 ~108!

for a and b independent of velocities, that is, for densi
modes and sinceQ̄ stands atz, one may neglect operatorsL̃
and K for small z in the mode coupling formula@25#. The
most trivial self-consistent ring approximation for the fu
propagatorḠ is based on the ring operator

R11
MC~ t !5L̄12S22

R ~ t !L̄21, ~109!

where

S22
R ~12u1828;t !5S11

R ~1u18;t !S11
R ~2u28;t !

1S11
R ~1u28;t !S11

R ~2u18;t ! ~110!

and the propagatorS11
R is defined by

S̃11
R ~z!5@zQ̄112L̄112R̃11

MC~z!#21. ~111!

The celebrated mode coupling formula@13–16# is recovered
for

Ḡ11~z!.Q̄11S̃11
R ~z!Q̄11. ~112!

In the case of hard spheres interaction is taken into acco
by L̄11, while in the case of smooth tailL̄22 can be needed
Therefore, the mode coupling formula for hard spheres w
smooth tails should be corrected by interaction. The corr
tion is based on the full two-particle propagator

S22~ t !5exp$tQ̄22
21L̄22%Q̄22

21 . ~113!

As shown in Appendix C therepeated ring correctionhas the
form
1-8
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R22
MCR~ t !5E

0

t

ds L̄12S22
R ~s!L̃22S22

R ~ t2s!L̄21

1
d

dtE0

t

ds L̄12S22
R ~s!Q̇22K22Q̇22S22

R ~ t2s!L̄21.

~114!

Finally, we have

S̃11
R ~z!5@zQ̄112L̄112R̃11

MC~z!2R̃11
MCR~z!#21. ~115!

This formula is solved by recurrence. One can take Ens
approximationSR.SE andR11

MC5R11
MCR50 to the first itera-

tion. We emphasize that there is noH theorem proven for
mode coupling formulas. Therefore, the formula may n
work in some cases, especially at very high densities.

XI. CONCLUSIONS

We have presented an algebraic approach to the lin
kinetic theory by introducing well defined Hilbert space a
two quantumlike operators. Only equilibrium distributio
functions are necessary to calculate matrix elements of
eratorsQ andL. Therefore, using standard techniques to
termine distribution functions@26–29#, it is possible in prin-
ciple to find transport coefficients and arbitrary tim
correlation functions either for hard spheres or smooth
tentials. The discontinuity of the Hilbert space plays t
same role in dissipation as a hard core interaction. Howe
contrary to hard spheres, it is much harder to prove that o
energy and density modes do not decay in the smooth c
We have constructed an extension of Enskog theory
smooth potentials, whereas OSR are natural consequenc
our symmetric procedure. The Green-Kubo formulas are
formulated with dissipation included and a correction to
mode coupling formula is found for interactions with a ha
core. The symmetric, algebraic approach may be helpfu
further analysis of linear kinetic theory.
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APPENDIX A

We shall analyze only the casel 52. From the definitions
~61! and ~28!, we get

$a2
2* ,b2

1%5W$ã2* ,b̃2%1(
i P2

S ã2* W 1
]W 2

]r i
•

]b̃2

]pi

2b̃2W 2
]W 1

]r i
•

]ã2*

]pi
D . ~A1!

We have

W 6~12!5u~D62r 12! ~A2!
02120
g

t

ar

p-
-

-

r,
ly
se.
to
s of
e-
e

in

d
s-

and

]W 6~12!

]r12
52 r̂12d~D62r 12!. ~A3!

Hence, the second term on the right hand side of Eq.~A1!
can be written in the form

2 r̂12•F2d~D22r 12!u~D12r 12!ã2*
]b̃2

]p12
22d~D12r 12!

3u~D22r 12!b̃2

]ã2*

]p12
G , ~A4!

where

]

]p12
5

1

2 S ]

]p1
2

]

]p2
D . ~A5!

We use the identity

x]y5@]~xy!1x]y2y]x#/2 ~A6!

and

d~D22r 12!u~D12r 12!1d~D12r 12!u~D22r 12!

5d~D2r 12! ~A7!

in order to get

@d~D12r 12!u~D22r 12!2d~D22r 12!u~D12r 12!#

3 r̂12•
]~ ã2* b̃2!

]p12
2d~D2r 12! r̂12•

ã2* ]b̃22b̃2]ã2*

]p12
.

~A8!

Due to the Maxwell’s distribution of velocities~11!, we get

2kBTE d2 f 2@d~D22r 12!u~D12r 12!2d~D12r 12!

3u~D22r 12!# r̂12•
]~ ã2* b̃2!

]p12

52
1

2E d2 f 2d~D2r 12!u r̂12•v12uã2* b̃2 . ~A9!

This generalizes easily to the casel .2. Only the domain
W51 is affected by other particles. The result is Eq.~66!.

APPENDIX B

For hard spheres the condition^uuLuu&50 implies from
Eq. ~55!

u~k!1u~k2 i !1u~k2 j !5u~k!1u~k2 i 8!1u~k2 j 8!
~B1!

for k< l 11. Here, primes denote velocities after collisio
given by Eq.~41!. It is proven@19# that for u satisfying the
group propertyun5un(r1 , . . . ,rn) for n.1 and
1-9
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u~r,v !5av21b•v1 f ~r!, ~B2!

wherea andb are constants andf (r) is an arbitrary function.
Due to Eq.~44! and

T6~ i j !@a~v1
21v2

2!1b•~v11v2!1c#50, ~B3!

wherec may depend on positions of all particles, a vec
uw&5L2uu& belongs to the same truncated Hilbert space l
u. Hence

^wuQuw&5^wuLuu&50. ~B4!

From the positive definiteness ofQ we obtain

L2uu&5Luu&50. ~B5!

For n.2, un must be zero or otherwise free streaming w
spread it all over the space. Forn52 we have

v1•
]u2

]r1
1v2•

]u2

]r2
52av12•

]f~r12!

]r12
. ~B6!

From the arbitrariness ofv1 andv2 we get

]u2

]r1
5

]f~r12!

]r12
~B7!

and finally u252f2 from the fact thatu2→` when r12
→`. Similarly, for n51 we obtain

v•
] f ~r!

]r
50 ~B8!

and f 5const. The result is Eq.~69!.
We consider such vectorsu thatul vanish at the boundary

of the domainW51 and

^auLuu&50 for every a. ~B9!

Vectora must be the vector truncated in the way described
Sec. VI. We can write the above equation in the form

^auQuLu&50. ~B10!

Note thatL contains elements pushing beyond our trun
tion, e.g.,Ll 11,l . Let us define vectorsv andw by

vk5 (
i 5k21

k

Lkiui for k, l ,

v l5W (
i 5 l 21

l

Lkiui , vk50 for k. l , ~B11!

wl5~12W! (
i 5 l 21

l

Ll i bi ,
02120
r
e

n

-

wl 115Ll 11,lui , wk50 for k. l 11. ~B12!

We takea5v and get

^vuQuw&1^vuQuw&50. ~B13!

From the positive definiteness ofQ we obtain

^wuQuw&2^vuQuv&.0. ~B14!

If ul does not depend on velocities thenw50 and uv&
5Luu&50 and the rest of the proof can be found in Re
@30#. However, there is no reason for that and a non-Gibbs
solution is in principle possible.

APPENDIX C

Let us expand the propagator~113! in a Taylor series
around the free propagator

S22
0 5exp$tQ̇22

21L̇22%Q̇22
21 ~C1!

with K22 or L̃22 appearing only once. We obtain

S22.S22
0 1 (

n50

`
tn

n! (
m50

n21

~Q̇22
21L̇22!

mQ̇22
21L̃22

3~Q̇22
21L̇22!

n2m21Q̇22
21

1 (
n50

`
tn

n! (
m50

n21

~Q̇22
21L̇22!

mK22L̇22

3~Q̇22
21L̇22!

n2m21Q̇22
211S22

0 Q̇22K22. ~C2!

Due to the identity

E
0

t

ds sm~ t2s!k5
m!k!

~m1k11!!
tm1k11, ~C3!

we have

(
n50

`
tn

n! (
m50

n21

~Q̇22
21L̇22!

mQ̇22
21L̃22~Q̇22

21L̇22!
n2m21Q̇22

21

5E ds S22
0 ~s!L̃22S22

0 ~ t2s!. ~C4!

Similarly,

(
n50

`
tn

n! (
m50

n21

~Q̇22
21L̇22!

mK22L̇22~Q̇22
21L̇22!

n2m21Q̇22
21

1S22
0 Q̇22K225

d

dtE0

t

ds S22
0 ~s!Q̇22K22Q̇22S22

0 ~ t2s!.

~C5!

The formula~114! is obtained by replacingS0 by SR.
1-10
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